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For a structure consisting of equal atoms, the point-atom densities of both the normal structure [O(r)] 
and the squared structure [02(r)] must be identical except for a scale factor. Starting from this considera- 
tion, similar to that which led Sayre [Acta Cryst. (1952). 5, 60-65] to his well-known equation, the volume 
integral of the squared difference between O(r)/I1 and .a2(r)/I2 must be zero,/1 and 12 being appropriate 
scale factors. Consequently a new figure of merit for a set of phases is derived; the method requires 
consideration of both triples and quadruples of reflexions with ~.Ht = 0. It proves to be effective in 
selecting the correct phase sets for four centrosymmetrical compounds whose structures are already 
known. An improved expression of the tangent formula is also derived from the new figure of merit. 

The choice of the correct set of phases from among 
the several sets having approximately the same degree 
of consistency in terms of the structure invariants re- 
lated to the Sayre triples is frequently a time-consum- 
ing step. The criterion usually adopted consists essen- 
tially of the analysis of the different Fourier maps, 
searching for the one which gives the most acceptable 
image of the structure. The analysis may be speeded 
up by the adoption of suitable criteria. We believe it 
to be particularly worth mentioning the procedure sug- 
gested by Woolfson (1972), consisting of a fully auto- 
mated search of the distances (and, possibly, of the 
angles) between the Fourier peaks, thus avoiding te- 
dious manual analysis of the maps. 

In the present note we propose an alternative cri- 
terion, which consists of considering a single parameter, 
or figure of merit, for each phase set; as we shall see, 
its evaluation requires consideration of quadruples, in 
addition to triples, of reflexions. The underlying logic 
is as follows. 

The Fourier maps obtained with phase sets which, 
although incorrect, satisfy most of the triple products, 
are quite often characterized by exceedingly strong 
peaks. A well known example is offered by the trivial 
solution consisting of all plus signs for a PT space 
group, which leads to positive signs of all the structure 
invariants s(H).  s(K). s(H + K) and is characterized by 
a very heavy peak at the origin. If we assume that all 
the atoms have the same weight then, as Sayre (1952) 
first pointed out, the squared structure must closely 
resemble the real structure. In fact, if we refer to the 
point-atom density 

1 
(r) = V ~ EH exp ( -2zc iH.  r ) ,  

-ff 
the real and the squared structures should be identical 
except for a scale factor. The simplest overall measure 
of the difference between the two structures is the in- 
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tegral of the squared difference between the two Fourier 
maps which, therefore, must approach zero for the 
correct phase set. In order for ~(r) and ~Z(r) to be put 
on the same scale, they must be divided by/1  and /2  
respectively, where 

I . =  f b"(r) dV. (1) 
(cell) 

The integral which must approach zero for the cor- 
rect structure is 

J =  f (02(r) 0(r)) zdV (2) 
(~ell) 12 11 " 

We want to point out here that positive contribu- 
tions to the above integral may arise not only from 
inequalities of the point maxima of ff and if2, but also 
from negative values of ff in any region of the unit cell. 

If the argument of the above integral is developed 
and equation (1) taken into account, equation (2) re- 
duces to 

14 12_2 /3 
J =  J~2 + I~ 1ff2" (3) 

If N is the number of equal atoms in the unit cell, 
it is easy to show that 

1 
/1 = E0 = I / N ;  12= V ~ IEHI2; 

I F 1  

1 
13 = - ~  ~_~n ~ EH EK E- H - K ; 

1 
14~-V3 ~ ~K ~L EHEKELE-H-K-L" 
Substituting into equation (3), we get 

1 

H 

-2( Z Z eHe~e_._~) 
H K 

×(  Z [enlZ/Eo)+( ~. IEHIZla/E~] • H H 

(4) 

(5) 
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For the correct set of phases we know that 

(IEI,12)= 1; (EnEKE_n_K)=I/I/N; 
<EnEKEI~E-n_K_I.)= 1/N, (6) 

and consequently from equation (5), J approaches 
zero. 

In practice, once a set of phases is given for the 
strongest reflexions, the right-hand side of equation (5) 
may be computed. Since J is intrinsically positive [see 
equation (2)], the resulting value should be a minimum 
for the correct structure. Alternatively, other figures 
of merit, linearly related to J ,  may be derived from 
equation (5). As an example, if we define 

~ = (  ~ IE,.,12)IEo. [ ~ IE.I2-J. V. E~], (7) 
H H 

is to be a maximum with respect to the phases. It 
may be convenient at this point to introduce the phase 
angles in an explicit way, remembering that 

Eri=lEn[ exp (/OH); 0-H = - c o n ;  
EnEKE-H-K + E-nE-KEH+K 
=2[EHEKE-n-KI c o s  (COIl-It- COK ~- CO_H_K) , (8) 

with an analogous expression for the quadruples. From 
equations (5), (7) and (8) we obtain 

~ =  2 ~ ~ ]EHEKE_,,_KI COS (Con + COK + CO-n-K) 
H K 

- ( C o / 2  le.l ) • 2; I 
H H K L 

x cos (CO. + COK + COL + CO-n-K-L) • (9) 

Numerical tests of the above criterion for phase 
selection, based on maximization of expression (9), 
have been made on the following four centrosymmetric 
structures (space group PI-): cyclododeca-2,4,8-triene- 
1,6-dione (cis-trans-cis stereoisomer) (I; Kennard, 
Wampler, Coppola, Motherwell & Watson, 1971); 

Table 1. List of  the figures of  merit in an arbitrary scale [o~ - see equation (9)] for the most probable sets of  signs 
of four different structures (see text) 

S t r u c t u r e  I 

h k I E(hkl) Sets 1 2 3 4 

1 ~ 5 4.35 + + + + 
] 2 1 2.56 + + + + 
3 9 0 2.03 + + + + 
4 3 .  2 3.55 + - - + 
2 ~ 4 3.35 + + + + 
0 1 2 2 . 6 1  + + + + 
4 8 0 2.22 + + - - 

o@-= 245 280 275 302 
S t r u c t u r e  I I  

h k l E(hkl) Sets 1 2 3 4 

g 2 5 6-73 + + + + 
7 0 6 6.13 + + + + 

i 5 2 -51  + + + + 
7 0 5 5 . 6 9  + + + + 

1--0 ~ 7 5.36 + + - - 
7 0 1 4 . 1 0  + - + - 

o ~ - =  660 713 698 695 

S t r u c t u r e  I I I  

h k l E(hkl) Sets 1 2 3 4 

3 T 1 4 - 8 5  + + + + 
6 1 3.63 + + + + 

5 4 4 2-72 + + + + 
0 6 5-64 + - + - 

4 4 4 3.21 + - - + 
~ 7 3 . 1 8  + - - + 

~ " =  119 131 139 134 

S t r u c t u r e  IV  

h k l E(hkl) Sets 1 2 3 4 

5 5 4 5.73 + + + + 
T 4 1 5.71 + + + + 
6 5 4 5.27 + + + + 
6 T 6 5 . 4 9  + - + - 
2 ~ 5 5 . 4 8  + + - - 
3 18 1 5.21 + + + + 
7 ~ 9 3.52 + + + + 
T 0 3 3 - 0 3  + + - - 

~ - =  723 979 948 852 

5 6 7 8 9 10 11 12 13" 14 15 16 
+ + + + + + + + + + + + 
+ + + + + + + + + + + + 
+ + + + + + + + + + + + 
+ -- _ + + -- _ + + -- _ + 
. . . . . . . .  + + + + 
+ + + + . . . . . . . .  
+ + . . . .  + + -- _ + + 

264 296 293 318 336 317 319 295 350 333 332 311 

5* 6 7 8 
+ + + + 
+ + + + 
+ + + + 

_ _ + + 
- + - + 

739 678 711 710 

5* 6 7 8 
+ + + + 
+ + + + 
+ + + + 
- + - -  + 
+ -- _ + 
- -  + + - -  

1 3 9  134 119 131 

5 6 7 8 
+ + + + 
+ + + + 
+ + + + 
+ -- + -- 
+ + -- _ 

+ + + + 
_ _ + + 

979 723 852 948 

9 10 11 12 13 14" 15 16 
+ + -~ + + + + + 

+ + -t- + + + + + 
+ + + + + + + + 
+ -- + -- + -- + -- 
+ + - _ + + -- _ 
+ + + + . . . .  

+ + . . . .  + + 

995 788 850 ~ 6  788 996 916 850 
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p-toluic acid (II; Takwale & Pant, 1971); 1,14-bis- 
(2', 6', 6'-t rimethylcyclohex - 1' - enyl) - 3,12 - dimethyl - te- 
tradeca- 1,3,5,7,9,11,13-heptaene-6,9-dinitrile (III; 
Braun, Hornstra & Leenhouts, 1971); (N,N'-dibenzyl- 
4,4'-bipyridylium) z + - (7,7, 8,8-tetracyano quinodime- 
thane)l-  (IV; Sundaresan & Wallwork, 1972), with 
12,10, 19 and 45 independent non-hydrogen atoms 
respectively. 

For each of the four structures, Table 1 reports the 
most probable sets of basic signs from which the com- 
plete sets used in the calculations may be generated 
through Sayre triples, together with the corresponding 
figures of merit. The correct set of signs is marked with 
an asterisk. For structure I, Table 1 shows that, out 
of the 16 sets of signs sharing the same highest figure 
of merit in terms of the Sayre triples, the correct set 
is characterized by the highest value of ~ calculated 
from 134 independent reflexions (dmln = 1"03 A). For 
structure II the correct set is characterized analogously 
out of eight sets, using 151 independent reflexions (dm~, 
=0"96 A_). For each of structures III and IV, the cor- 
rect set shares the highest ~ value with another set 
out of eight sets (III), or 16 sets (IV), with the same 
largest consistency in terms of the Sayre triples; the 
number of independent reflexions used for the calcula- 
tions was 166 (dm~n=0.78 A) and 157 (drain= 1.09) for 
III and IV respectively. The times required on a 
UNIVAC-1108 computer were about 3, 4, 5 and 4 
min in cases I, II, III and IV. The time is critically 
dependent on the number of reflexions employed in 
the evaluation of the figure of merit. As an example, 
with 200 reflexions the time would be about 20 min. 
In our experience it is most convenient to select the 
reflexions within a limiting sphere as small as possible. 

Imposing the maximum condition Oo~/O~0n = 0, under 
the assumption that all the phases are independent 
variables, produces a new tangent formula, i.e. 

inasmuch as the requirement leading to equation (10) 
[i.e. J = m i n i m u m ,  see equation (2)] should be more 
stringent than the condition 

l ~3(r) d V= maximum,  
( ce l l )  

which leads to the usual tangent formula. We have not 
carried out any numerical test on equation (10) as yet. 

There is an interesting, although qualitative, analogy 
between maximization of equation (9) and that of a 
Karle-Hauptman determinant (Karle & Hauptman, 
1950). Namely, in both cases the triple products appear 
with positive signs, whereas the quadruples have nega- 
tive signs, although the ratio of their coefficients is dif- 
ferent in the two cases. However, equation (9) is more 
easily computed than the corresponding Karle-Haupt- 
man determinant. On the other hand, it has the disad- 
vantage that a reasonably complete set of phases of 
the reflexions contained within some limiting sphere 
is needed, which would limit the use of equation (9) 
to the final stage of phase assignment, at least at the 
present level of development of this approach. 

We thank Dr G. Tsoucaris and Dr H. Hauptman for 
helpful discussions. 
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